OpenAI has announced GPT-4 is imminent, with demonstrations showing significantly improved capabilities—better reasoning, longer context, multimodal inputs. For those of us building AI-powered applications, this represents both opportunity and architectural consideration.
Here’s how to prepare for building with GPT-4.
Expected Improvements
Capability Upgrades
gpt4_improvements:
reasoning:
- More accurate logical reasoning
- Better mathematical problem-solving
- Improved code understanding
- Reduced hallucination (though not eliminated)
context:
- Longer context window (up to 32K tokens rumored)
- Better use of provided context
- Improved instruction following
multimodal:
- Image understanding
- Visual reasoning
- Diagram interpretation
safety:
- Better refusal of harmful requests
- More aligned outputs
- Reduced bias (but not zero)
Trade-offs
gpt4_tradeoffs:
cost:
- Significantly more expensive than GPT-3.5
- Token costs higher for input and output
- May need tiered model approach
latency:
- Larger model means slower inference
- Trade-off with quality
- Streaming becomes more important
availability:
- Rate limits initially restrictive
- Waitlists likely
- Plan for fallback models
Architecture Considerations
Model Selection Strategy
class ModelRouter:
"""Route requests to appropriate model based on complexity."""
def __init__(self):
self.models = {
'simple': 'gpt-3.5-turbo',
'complex': 'gpt-4',
'vision': 'gpt-4-vision' # Hypothetical
}
def route(self, request):
complexity = self.assess_complexity(request)
if request.has_images:
return self.models['vision']
if complexity > 0.7:
return self.models['complex']
return self.models['simple']
def assess_complexity(self, request):
"""Heuristics for task complexity."""
indicators = [
request.requires_reasoning,
request.involves_code,
request.needs_precision,
len(request.context) > 4000,
]
return sum(indicators) / len(indicators)
Cost-Aware Architecture
cost_optimization:
tiered_approach:
tier_1_simple:
model: gpt-3.5-turbo
use_for: Classification, simple chat, summarization
cost: $0.002/1K tokens
tier_2_complex:
model: gpt-4
use_for: Complex reasoning, code generation, analysis
cost: ~$0.03/1K tokens (estimated)
strategies:
pre_filter:
- Use 3.5 to check if 4 is needed
- Route only complex queries to GPT-4
caching:
- Cache more aggressively for expensive models
- Semantic caching for similar queries
prompt_optimization:
- Shorter prompts for GPT-4 (it understands more with less)
- More verbose for 3.5 if needed
Handling Longer Context
class ContextManager:
"""Manage context for different model context windows."""
def __init__(self):
self.limits = {
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16384,
'gpt-4': 8192,
'gpt-4-32k': 32768,
}
def prepare_context(self, documents, query, model):
limit = self.limits[model]
available = limit - self.estimate_tokens(query) - 500 # Buffer for response
if self.estimate_tokens(documents) <= available:
return documents
# Need to select/summarize
return self.select_relevant(documents, query, available)
def select_relevant(self, documents, query, token_limit):
"""Select most relevant documents that fit in context."""
# Use embeddings to rank by relevance
ranked = self.rank_by_relevance(documents, query)
selected = []
tokens = 0
for doc in ranked:
doc_tokens = self.estimate_tokens(doc)
if tokens + doc_tokens > token_limit:
break
selected.append(doc)
tokens += doc_tokens
return selected
New Capabilities
Vision Integration
# Preparing for multimodal capabilities
class MultimodalProcessor:
def process(self, inputs):
"""Handle text and image inputs."""
text_parts = []
image_parts = []
for input in inputs:
if input.type == 'text':
text_parts.append(input.content)
elif input.type == 'image':
image_parts.append(self.prepare_image(input.content))
return {
'text': '\n'.join(text_parts),
'images': image_parts
}
def prepare_image(self, image):
"""Prepare image for API (resize, encode)."""
# Resize to reasonable dimensions
resized = image.resize((1024, 1024))
# Encode as base64
return base64.b64encode(resized.tobytes())
Improved Code Understanding
code_capabilities:
current_gpt35:
- Basic code generation
- Simple debugging
- Syntax understanding
expected_gpt4:
- Complex algorithm implementation
- Multi-file understanding
- Architecture reasoning
- Subtle bug detection
application_ideas:
- Automated code review with deeper analysis
- Architecture documentation generation
- Test generation with edge case detection
- Refactoring suggestions with trade-off analysis
Migration Planning
Gradual Rollout
migration_approach:
phase_1_testing:
- Internal testing with GPT-4
- Compare quality vs GPT-3.5
- Measure latency and costs
phase_2_shadow:
- Run GPT-4 in shadow mode
- Log outputs without serving
- Analyze quality differences
phase_3_percentage:
- Route 10% of traffic to GPT-4
- Monitor costs and quality
- Adjust routing rules
phase_4_selective:
- Route high-value queries to GPT-4
- Keep simple queries on GPT-3.5
- Optimize based on data
A/B Testing Framework
class ModelExperiment:
def __init__(self, experiment_config):
self.config = experiment_config
self.metrics = MetricsCollector()
def run(self, request):
variant = self.assign_variant(request)
model = self.config.models[variant]
start = time.time()
response = model.generate(request)
latency = time.time() - start
self.metrics.record({
'variant': variant,
'latency': latency,
'tokens': response.usage.total_tokens,
'request_id': request.id
})
# Queue for quality evaluation
self.queue_for_evaluation(request, response, variant)
return response
Preparing Your Codebase
Abstraction Layer
# Abstract LLM interface for easy model swapping
from abc import ABC, abstractmethod
class LLMProvider(ABC):
@abstractmethod
def generate(self, prompt: str, **kwargs) -> str:
pass
@abstractmethod
def estimate_cost(self, prompt: str, max_tokens: int) -> float:
pass
class OpenAIProvider(LLMProvider):
def __init__(self, model: str):
self.model = model
self.pricing = {
'gpt-3.5-turbo': {'input': 0.0015, 'output': 0.002},
'gpt-4': {'input': 0.03, 'output': 0.06},
}
def generate(self, prompt: str, **kwargs) -> str:
response = openai.ChatCompletion.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
**kwargs
)
return response.choices[0].message.content
def estimate_cost(self, prompt: str, max_tokens: int) -> float:
input_tokens = len(prompt) / 4 # Rough estimate
pricing = self.pricing.get(self.model, self.pricing['gpt-3.5-turbo'])
return (input_tokens * pricing['input'] + max_tokens * pricing['output']) / 1000
Key Takeaways
- GPT-4 brings improved reasoning, longer context, and multimodal capabilities
- Cost will be significantly higher—plan tiered model strategies
- Longer context enables new use cases but requires context management
- Vision capabilities open up new application possibilities
- Abstract your LLM layer for easy model switching
- Plan gradual rollout with A/B testing
- Optimize costs with smart routing between models
- Prepare for rate limits and availability constraints
- The capabilities will evolve—build flexible architectures
GPT-4 is a significant step forward. Build architectures that can leverage it while managing costs and complexity.