Building AI-Powered Features: A Product Engineering Perspective

August 7, 2023

Every product team wants AI features. But AI features have different characteristics than traditional software: they’re non-deterministic, can fail in unexpected ways, and require new patterns for testing and monitoring. Building AI features well requires adapting your engineering practices.

Here’s how to approach AI feature development.

AI Feature Characteristics

How AI Differs

traditional_vs_ai:
  traditional:
    behavior: Deterministic
    testing: Input → expected output
    failure: Predictable, catchable
    iteration: Code changes → behavior changes

  ai_powered:
    behavior: Non-deterministic (can vary)
    testing: Input → range of acceptable outputs
    failure: Subtle, quality degradation
    iteration: Prompt/model changes → behavior changes

User Expectations

user_expectations:
  what_users_expect:
    - AI that "just works"
    - Perfect accuracy
    - Instant responses
    - Understanding of context

  reality:
    - AI makes mistakes
    - Quality varies
    - Latency is significant
    - Context is limited

  bridge_the_gap:
    - Set appropriate expectations
    - Design for graceful failure
    - Provide feedback mechanisms
    - Iterate based on real usage

Feature Design

Identifying Good AI Use Cases

good_ai_use_cases:
  automate_tedious:
    - Summarization
    - Data extraction
    - Categorization
    - Draft generation

  augment_human:
    - Suggestions (human decides)
    - Error detection
    - Information retrieval
    - Translation

  enable_new:
    - Natural language interfaces
    - Semantic search
    - Personalization at scale

  avoid:
    - High-stakes autonomous decisions
    - Where precision is critical
    - Where explanation is required
    - Where AI limitation causes harm

Feature Specification

ai_feature_spec:
  standard_sections:
    - Problem statement
    - User stories
    - Requirements

  ai_specific_sections:
    quality_definition:
      - What does "good" look like?
      - Acceptable error rate?
      - Edge cases to handle?

    failure_modes:
      - What happens when AI fails?
      - How do users recover?
      - What's the fallback?

    evaluation:
      - How do we measure success?
      - What metrics matter?
      - How do we get feedback?

    constraints:
      - Latency requirements
      - Cost budget
      - Data privacy considerations

Implementation Patterns

The AI Feature Stack

┌─────────────────────────────────────────┐
│           User Interface                │
│   (Manages expectations, shows status)  │
├─────────────────────────────────────────┤
│         Feature Logic                   │
│   (Orchestration, business rules)       │
├─────────────────────────────────────────┤
│         AI Layer                        │
│   (LLM calls, prompt management)        │
├─────────────────────────────────────────┤
│        Quality & Safety                 │
│   (Validation, filtering, fallbacks)    │
├─────────────────────────────────────────┤
│        Observability                    │
│   (Logging, metrics, feedback)          │
└─────────────────────────────────────────┘

Example Implementation

class AISummarizationFeature:
    def __init__(self, llm, validator, metrics):
        self.llm = llm
        self.validator = validator
        self.metrics = metrics

    async def summarize(self, document: str, user_id: str) -> SummaryResult:
        start_time = time.time()

        try:
            # Input validation
            if len(document) > 100000:
                return SummaryResult(
                    success=False,
                    error="Document too long",
                    fallback=document[:500] + "..."
                )

            # Generate summary
            prompt = self._build_prompt(document)
            response = await self.llm.generate(
                prompt,
                max_tokens=300,
                temperature=0.3
            )

            # Validate output
            validation = self.validator.validate(response, document)
            if not validation.passed:
                self.metrics.increment('summarization.validation_failed')
                return SummaryResult(
                    success=False,
                    error="Summary quality check failed",
                    fallback=self._extractive_fallback(document)
                )

            # Success
            self.metrics.timing('summarization.latency', time.time() - start_time)
            self.metrics.increment('summarization.success')

            return SummaryResult(
                success=True,
                summary=response,
                confidence=validation.confidence
            )

        except Exception as e:
            self.metrics.increment('summarization.error')
            return SummaryResult(
                success=False,
                error="Unable to generate summary",
                fallback=self._extractive_fallback(document)
            )

    def _extractive_fallback(self, document: str) -> str:
        """Simple extractive summary as fallback."""
        sentences = document.split('.')
        return '. '.join(sentences[:3]) + '.'

UI Patterns

ai_ui_patterns:
  loading_states:
    - Show clear "AI is thinking" indicator
    - Progress indicators for long operations
    - Allow cancellation

  uncertainty_communication:
    - "AI-generated" labels
    - Confidence indicators where appropriate
    - "This may contain errors" disclaimers

  feedback_collection:
    - Thumbs up/down on results
    - "Report an issue" option
    - Easy correction mechanisms

  graceful_degradation:
    - Show fallback when AI fails
    - Offer manual alternative
    - Don't leave user stuck

Testing AI Features

Testing Strategy

ai_testing_levels:
  unit_tests:
    - Prompt formatting
    - Input validation
    - Output parsing
    - Business logic around AI

  integration_tests:
    - End-to-end with mocked LLM
    - Error handling paths
    - Timeout behavior

  quality_tests:
    - Golden dataset evaluation
    - Regression detection
    - Edge case coverage

  production_monitoring:
    - User feedback analysis
    - Quality metrics tracking
    - Anomaly detection

Evaluation Framework

class AIFeatureEvaluator:
    def __init__(self, feature, golden_dataset):
        self.feature = feature
        self.golden_dataset = golden_dataset

    def evaluate(self) -> EvaluationReport:
        results = []

        for test_case in self.golden_dataset:
            result = self.feature.process(test_case.input)

            # Compare to expected output
            similarity = self.compare(result.output, test_case.expected)
            passed = similarity >= test_case.threshold

            results.append({
                'test_id': test_case.id,
                'passed': passed,
                'similarity': similarity,
                'expected': test_case.expected,
                'actual': result.output
            })

        return EvaluationReport(
            total=len(results),
            passed=sum(1 for r in results if r['passed']),
            pass_rate=sum(1 for r in results if r['passed']) / len(results),
            results=results
        )

Launching and Iterating

Gradual Rollout

rollout_strategy:
  phase_1_internal:
    - Internal dogfooding
    - Collect feedback
    - Fix major issues

  phase_2_beta:
    - 5% of users
    - Feature flag controlled
    - Monitor closely

  phase_3_gradual:
    - 25% → 50% → 100%
    - Watch metrics at each step
    - Rollback plan ready

  ongoing:
    - Continuous feedback collection
    - Regular quality evaluation
    - Prompt/model improvements

Feedback Loop

feedback_collection:
  explicit:
    - In-app feedback buttons
    - Support ticket analysis
    - User interviews

  implicit:
    - Feature usage metrics
    - Error/retry rates
    - Time to complete tasks
    - User corrections/edits

  action:
    - Weekly review of feedback
    - Prioritize improvements
    - Update evaluation dataset
    - Iterate on prompts

Key Takeaways

AI features are different. Adapt your practices accordingly.