Every product team wants AI features. But AI features have different characteristics than traditional software: they’re non-deterministic, can fail in unexpected ways, and require new patterns for testing and monitoring. Building AI features well requires adapting your engineering practices.
Here’s how to approach AI feature development.
AI Feature Characteristics
How AI Differs
traditional_vs_ai:
traditional:
behavior: Deterministic
testing: Input → expected output
failure: Predictable, catchable
iteration: Code changes → behavior changes
ai_powered:
behavior: Non-deterministic (can vary)
testing: Input → range of acceptable outputs
failure: Subtle, quality degradation
iteration: Prompt/model changes → behavior changes
User Expectations
user_expectations:
what_users_expect:
- AI that "just works"
- Perfect accuracy
- Instant responses
- Understanding of context
reality:
- AI makes mistakes
- Quality varies
- Latency is significant
- Context is limited
bridge_the_gap:
- Set appropriate expectations
- Design for graceful failure
- Provide feedback mechanisms
- Iterate based on real usage
Feature Design
Identifying Good AI Use Cases
good_ai_use_cases:
automate_tedious:
- Summarization
- Data extraction
- Categorization
- Draft generation
augment_human:
- Suggestions (human decides)
- Error detection
- Information retrieval
- Translation
enable_new:
- Natural language interfaces
- Semantic search
- Personalization at scale
avoid:
- High-stakes autonomous decisions
- Where precision is critical
- Where explanation is required
- Where AI limitation causes harm
Feature Specification
ai_feature_spec:
standard_sections:
- Problem statement
- User stories
- Requirements
ai_specific_sections:
quality_definition:
- What does "good" look like?
- Acceptable error rate?
- Edge cases to handle?
failure_modes:
- What happens when AI fails?
- How do users recover?
- What's the fallback?
evaluation:
- How do we measure success?
- What metrics matter?
- How do we get feedback?
constraints:
- Latency requirements
- Cost budget
- Data privacy considerations
Implementation Patterns
The AI Feature Stack
┌─────────────────────────────────────────┐
│ User Interface │
│ (Manages expectations, shows status) │
├─────────────────────────────────────────┤
│ Feature Logic │
│ (Orchestration, business rules) │
├─────────────────────────────────────────┤
│ AI Layer │
│ (LLM calls, prompt management) │
├─────────────────────────────────────────┤
│ Quality & Safety │
│ (Validation, filtering, fallbacks) │
├─────────────────────────────────────────┤
│ Observability │
│ (Logging, metrics, feedback) │
└─────────────────────────────────────────┘
Example Implementation
class AISummarizationFeature:
def __init__(self, llm, validator, metrics):
self.llm = llm
self.validator = validator
self.metrics = metrics
async def summarize(self, document: str, user_id: str) -> SummaryResult:
start_time = time.time()
try:
# Input validation
if len(document) > 100000:
return SummaryResult(
success=False,
error="Document too long",
fallback=document[:500] + "..."
)
# Generate summary
prompt = self._build_prompt(document)
response = await self.llm.generate(
prompt,
max_tokens=300,
temperature=0.3
)
# Validate output
validation = self.validator.validate(response, document)
if not validation.passed:
self.metrics.increment('summarization.validation_failed')
return SummaryResult(
success=False,
error="Summary quality check failed",
fallback=self._extractive_fallback(document)
)
# Success
self.metrics.timing('summarization.latency', time.time() - start_time)
self.metrics.increment('summarization.success')
return SummaryResult(
success=True,
summary=response,
confidence=validation.confidence
)
except Exception as e:
self.metrics.increment('summarization.error')
return SummaryResult(
success=False,
error="Unable to generate summary",
fallback=self._extractive_fallback(document)
)
def _extractive_fallback(self, document: str) -> str:
"""Simple extractive summary as fallback."""
sentences = document.split('.')
return '. '.join(sentences[:3]) + '.'
UI Patterns
ai_ui_patterns:
loading_states:
- Show clear "AI is thinking" indicator
- Progress indicators for long operations
- Allow cancellation
uncertainty_communication:
- "AI-generated" labels
- Confidence indicators where appropriate
- "This may contain errors" disclaimers
feedback_collection:
- Thumbs up/down on results
- "Report an issue" option
- Easy correction mechanisms
graceful_degradation:
- Show fallback when AI fails
- Offer manual alternative
- Don't leave user stuck
Testing AI Features
Testing Strategy
ai_testing_levels:
unit_tests:
- Prompt formatting
- Input validation
- Output parsing
- Business logic around AI
integration_tests:
- End-to-end with mocked LLM
- Error handling paths
- Timeout behavior
quality_tests:
- Golden dataset evaluation
- Regression detection
- Edge case coverage
production_monitoring:
- User feedback analysis
- Quality metrics tracking
- Anomaly detection
Evaluation Framework
class AIFeatureEvaluator:
def __init__(self, feature, golden_dataset):
self.feature = feature
self.golden_dataset = golden_dataset
def evaluate(self) -> EvaluationReport:
results = []
for test_case in self.golden_dataset:
result = self.feature.process(test_case.input)
# Compare to expected output
similarity = self.compare(result.output, test_case.expected)
passed = similarity >= test_case.threshold
results.append({
'test_id': test_case.id,
'passed': passed,
'similarity': similarity,
'expected': test_case.expected,
'actual': result.output
})
return EvaluationReport(
total=len(results),
passed=sum(1 for r in results if r['passed']),
pass_rate=sum(1 for r in results if r['passed']) / len(results),
results=results
)
Launching and Iterating
Gradual Rollout
rollout_strategy:
phase_1_internal:
- Internal dogfooding
- Collect feedback
- Fix major issues
phase_2_beta:
- 5% of users
- Feature flag controlled
- Monitor closely
phase_3_gradual:
- 25% → 50% → 100%
- Watch metrics at each step
- Rollback plan ready
ongoing:
- Continuous feedback collection
- Regular quality evaluation
- Prompt/model improvements
Feedback Loop
feedback_collection:
explicit:
- In-app feedback buttons
- Support ticket analysis
- User interviews
implicit:
- Feature usage metrics
- Error/retry rates
- Time to complete tasks
- User corrections/edits
action:
- Weekly review of feedback
- Prioritize improvements
- Update evaluation dataset
- Iterate on prompts
Key Takeaways
- AI features are non-deterministic—design for variability
- Define quality clearly before building
- Build fallbacks for when AI fails
- Validate outputs before showing to users
- Set user expectations appropriately
- Collect feedback systematically
- Test with golden datasets, not just unit tests
- Roll out gradually and monitor closely
- Iterate based on real-world performance
- AI features require ongoing maintenance
AI features are different. Adapt your practices accordingly.