AI Compliance for Enterprise

June 10, 2024

Enterprise AI adoption is hitting a compliance wall. Legal, security, and compliance teams are asking questions that engineering teams often can’t answer. Data lineage, model auditing, and regulatory requirements demand new practices.

Here’s how to build AI systems that satisfy compliance requirements.

The Compliance Landscape

Emerging Requirements

ai_compliance_landscape:
  data_regulations:
    - GDPR (EU data protection)
    - CCPA (California privacy)
    - Industry-specific (HIPAA, SOC2, PCI)

  ai_specific:
    - EU AI Act (coming)
    - NIST AI Risk Framework
    - Industry guidelines

  enterprise_concerns:
    - Data residency
    - Vendor agreements
    - Audit requirements
    - Liability

Common Compliance Questions

compliance_questions:
  data:
    - Where does our data go?
    - Is data used for training?
    - Can we delete user data?
    - What's the retention policy?

  model:
    - What model makes decisions?
    - Can we explain outputs?
    - How do we audit decisions?
    - What's the error rate?

  process:
    - Who approved this AI use?
    - What testing was done?
    - How do we handle incidents?
    - What's the rollback plan?

Building Compliant Systems

Data Governance

class AIDataGovernance:
    """Track data flowing through AI systems."""

    def __init__(self, config: GovernanceConfig):
        self.data_store = config.data_store
        self.audit_log = config.audit_log

    async def process_with_lineage(
        self,
        input_data: dict,
        user_id: str,
        purpose: str
    ) -> ProcessingResult:
        # Create lineage record
        lineage_id = await self.audit_log.create_record(
            input_hash=hash_data(input_data),
            user_id=user_id,
            purpose=purpose,
            timestamp=datetime.utcnow(),
            data_classification=classify_data(input_data)
        )

        # Process with tracking
        try:
            result = await self._process(input_data)

            await self.audit_log.update_record(
                lineage_id=lineage_id,
                output_hash=hash_data(result),
                model_used=result.model,
                status="success"
            )

            return result
        except Exception as e:
            await self.audit_log.update_record(
                lineage_id=lineage_id,
                status="error",
                error=str(e)
            )
            raise

    async def handle_deletion_request(self, user_id: str):
        """GDPR right to deletion."""
        # Find all records
        records = await self.audit_log.find_by_user(user_id)

        # Delete or anonymize
        for record in records:
            await self.audit_log.anonymize(record.id)

        return DeletionConfirmation(
            user_id=user_id,
            records_affected=len(records),
            timestamp=datetime.utcnow()
        )

Model Auditing

class ModelAuditSystem:
    """Maintain audit trail for model decisions."""

    def __init__(self, storage: AuditStorage):
        self.storage = storage

    async def log_inference(
        self,
        request_id: str,
        model_id: str,
        input_data: dict,
        output: dict,
        metadata: dict
    ) -> AuditRecord:
        record = AuditRecord(
            request_id=request_id,
            timestamp=datetime.utcnow(),
            model_id=model_id,
            model_version=await self.get_model_version(model_id),
            input_hash=hash_pii_safe(input_data),
            output_summary=summarize_output(output),
            latency_ms=metadata.get("latency_ms"),
            token_count=metadata.get("tokens"),
            user_id=metadata.get("user_id"),
            session_id=metadata.get("session_id")
        )

        await self.storage.save(record)
        return record

    async def generate_audit_report(
        self,
        start_date: datetime,
        end_date: datetime
    ) -> AuditReport:
        records = await self.storage.query(start_date, end_date)

        return AuditReport(
            period=(start_date, end_date),
            total_requests=len(records),
            models_used=self._count_models(records),
            error_rate=self._calculate_error_rate(records),
            average_latency=self._calculate_avg_latency(records),
            data_classifications=self._count_classifications(records)
        )

Vendor Management

API Provider Assessment

vendor_assessment:
  data_handling:
    questions:
      - Is data used for model training?
      - What's the data retention period?
      - Where is data processed geographically?
      - Is data encrypted in transit and at rest?

    openai:
      training: "No (API data not used for training by default)"
      retention: "30 days for abuse monitoring"
      location: "US primarily"
      encryption: "Yes"

    anthropic:
      training: "No (not by default)"
      retention: "30 days"
      location: "US"
      encryption: "Yes"

  compliance_certifications:
    check_for:
      - SOC 2 Type II
      - ISO 27001
      - GDPR compliance statement
      - BAA availability (for HIPAA)

Contract Requirements

contract_checklist:
  data_protection:
    - Data processing agreement (DPA)
    - Sub-processor list
    - Breach notification terms
    - Data deletion provisions

  service_levels:
    - Uptime guarantees
    - Latency commitments
    - Support response times

  liability:
    - Indemnification terms
    - Limitation of liability
    - Insurance requirements

  exit_provisions:
    - Data portability
    - Termination notice
    - Transition assistance

Documentation Requirements

AI System Documentation

required_documentation:
  system_card:
    purpose: Describe AI system and its use
    contents:
      - System description
      - Intended use cases
      - Known limitations
      - Risk assessment
      - Mitigation measures

  data_inventory:
    purpose: Track data used in AI systems
    contents:
      - Data sources
      - Data types (PII, sensitive, etc.)
      - Processing purposes
      - Retention periods
      - Access controls

  model_registry:
    purpose: Track models in use
    contents:
      - Model identifier
      - Version history
      - Training data description
      - Evaluation results
      - Deployment status

Key Takeaways

Compliance enables AI adoption. Build it in.