Code migrations—framework upgrades, language transitions, API changes—are expensive and error-prone. AI assistance is changing this. What took months can now take weeks. But successful AI-assisted migration requires the right approach.
Here’s how to use AI for large-scale code migrations.
The Migration Challenge
Traditional Approach
traditional_migration:
challenges:
- Thousands of files to change
- Subtle pattern variations
- Breaking changes everywhere
- Testing burden
- Developer tedium
typical_timeline:
small_codebase: "2-4 weeks"
medium_codebase: "2-3 months"
large_codebase: "6-12 months"
failure_modes:
- Inconsistent transformations
- Missed edge cases
- Developer burnout
- Abandoned migrations
AI-Assisted Approach
ai_assisted_migration:
advantages:
- Consistent transformation
- Handles variations
- Never gets bored
- Fast iteration
timeline_improvement:
typical: "50-80% faster"
caveat: "With good setup"
still_required:
- Human review
- Test validation
- Edge case handling
Migration Strategy
Phase 1: Analysis
class MigrationAnalyzer:
"""Analyze codebase to understand migration scope."""
async def analyze_codebase(
self,
repo_path: str,
migration_type: str
) -> MigrationAnalysis:
# Find all files needing migration
files = await self._find_affected_files(repo_path, migration_type)
# Analyze patterns
patterns = await self._analyze_patterns(files)
# Estimate complexity
complexity = await self._estimate_complexity(patterns)
return MigrationAnalysis(
total_files=len(files),
patterns=patterns,
complexity=complexity,
estimated_effort=self._estimate_effort(complexity)
)
async def _analyze_patterns(self, files: list[str]) -> list[Pattern]:
"""Use LLM to identify common patterns."""
sample_files = self._sample_files(files, n=20)
patterns = await self.llm.generate(
prompt=f"""Analyze these code samples and identify common patterns
that will need to be migrated.
{self._format_samples(sample_files)}
List each pattern with:
- Pattern name
- Frequency estimate
- Transformation complexity
"""
)
return self._parse_patterns(patterns)
Phase 2: Template Development
class MigrationTemplates:
"""Develop and test migration templates."""
def __init__(self, llm):
self.llm = llm
self.templates = {}
async def develop_template(
self,
pattern_name: str,
examples: list[CodeExample]
) -> MigrationTemplate:
# Generate initial template
template = await self.llm.generate(
prompt=f"""Create a code transformation template for this pattern.
Pattern: {pattern_name}
Before/After Examples:
{self._format_examples(examples)}
Provide:
1. Detection pattern (regex or AST)
2. Transformation rules
3. Edge cases to handle
"""
)
# Test template on examples
results = await self._test_template(template, examples)
# Iterate if needed
while results.accuracy < 0.95:
template = await self._refine_template(template, results.failures)
results = await self._test_template(template, examples)
return template
async def _refine_template(
self,
template: MigrationTemplate,
failures: list[FailedCase]
) -> MigrationTemplate:
return await self.llm.generate(
prompt=f"""This migration template failed on some cases.
Template: {template}
Failed cases:
{self._format_failures(failures)}
Refine the template to handle these cases:"""
)
Phase 3: Batch Migration
class BatchMigrator:
"""Apply migrations across codebase."""
async def migrate_file(
self,
file_path: str,
templates: list[MigrationTemplate]
) -> MigrationResult:
original_content = await self._read_file(file_path)
# Try templates first (fast, deterministic)
content = original_content
for template in templates:
if template.matches(content):
content = template.apply(content)
# Use LLM for remaining transformations
if self._needs_llm_migration(content):
content = await self._llm_migrate(content)
# Validate syntax
if not await self._validate_syntax(content, file_path):
return MigrationResult(
file=file_path,
status="syntax_error",
needs_review=True
)
return MigrationResult(
file=file_path,
status="migrated",
original=original_content,
migrated=content
)
async def _llm_migrate(self, content: str) -> str:
"""Use LLM for complex/novel transformations."""
return await self.llm.generate(
prompt=f"""Migrate this code from [old pattern] to [new pattern].
Rules:
- Preserve functionality
- Maintain code style
- Handle edge cases
Original:
{content}
Migrated:"""
)
Phase 4: Validation
class MigrationValidator:
"""Validate migrated code."""
async def validate_migration(
self,
original: str,
migrated: str
) -> ValidationResult:
checks = await asyncio.gather(
self._check_syntax(migrated),
self._check_semantic_equivalence(original, migrated),
self._check_style_consistency(migrated),
self._run_tests(migrated)
)
return ValidationResult(
syntax_valid=checks[0],
semantically_equivalent=checks[1],
style_consistent=checks[2],
tests_passing=checks[3]
)
async def _check_semantic_equivalence(
self,
original: str,
migrated: str
) -> bool:
"""Use LLM to verify semantic equivalence."""
result = await self.llm.generate(
prompt=f"""Compare these two code versions.
Are they semantically equivalent (same behavior)?
Original:
{original}
Migrated:
{migrated}
Answer: yes/no, then explain any differences."""
)
return result.strip().lower().startswith("yes")
Real-World Example
React Class to Hooks Migration
# Migration prompt for React class → hooks
REACT_MIGRATION_PROMPT = """Migrate this React class component to a functional component with hooks.
Rules:
- Convert this.state to useState
- Convert lifecycle methods:
- componentDidMount → useEffect(..., [])
- componentDidUpdate → useEffect with dependencies
- componentWillUnmount → useEffect cleanup
- Convert this.props to destructured props
- Preserve all functionality
Original:
```jsx
{original_code}
Migrated functional component:"""
Example transformation
class_component = ’’' class UserProfile extends React.Component { state = { user: null, loading: true };
componentDidMount() { this.fetchUser(); }
fetchUser = async () => { const user = await api.getUser(this.props.userId); this.setState({ user, loading: false }); };
render() { if (this.state.loading) return ; return {this.state.user.name}; } } ’''
LLM output
functional_component = ’’' function UserProfile({ userId }) { const [user, setUser] = useState(null); const [loading, setLoading] = useState(true);
useEffect(() => { async function fetchUser() { const userData = await api.getUser(userId); setUser(userData); setLoading(false); } fetchUser(); }, [userId]);
if (loading) return ; return {user.name}; } ’''
## Key Takeaways
- AI can accelerate migrations by 50-80%
- Start with analysis to understand scope
- Develop templates for common patterns
- Use templates first, LLM for edge cases
- Validate every transformation
- Human review is still essential
- Test coverage enables confident migration
- Batch process with good progress tracking
- Keep original code until tests pass
- Document patterns for future migrations
AI makes migrations manageable. Use it strategically.