AI-Native Data Pipelines

May 26, 2025

Traditional data pipelines move and transform data. AI pipelines need to do more—embed, chunk, index, and keep everything synchronized. Building data infrastructure for AI requires new patterns.

Here’s how to build AI-native data pipelines.

AI Data Requirements

Beyond ETL

ai_data_needs:
  traditional_etl:
    - Extract from sources
    - Transform to schema
    - Load to warehouse

  ai_pipeline_additions:
    - Chunking documents
    - Generating embeddings
    - Indexing for retrieval
    - Maintaining freshness
    - Handling multi-modal

Pipeline Architecture

Core Components

class AIDataPipeline:
    """End-to-end AI data pipeline."""

    def __init__(
        self,
        chunker: Chunker,
        embedder: Embedder,
        vector_store: VectorStore,
        metadata_store: MetadataStore
    ):
        self.chunker = chunker
        self.embedder = embedder
        self.vector_store = vector_store
        self.metadata_store = metadata_store

    async def ingest_document(
        self,
        document: Document
    ) -> IngestionResult:
        # Check if already processed
        existing = await self.metadata_store.get(document.id)
        if existing and existing.hash == document.content_hash:
            return IngestionResult(status="unchanged")

        # Chunk document
        chunks = await self.chunker.chunk(document)

        # Generate embeddings
        embeddings = await self.embedder.embed_batch(
            [chunk.text for chunk in chunks]
        )

        # Store in vector database
        for chunk, embedding in zip(chunks, embeddings):
            await self.vector_store.upsert(
                id=f"{document.id}_{chunk.index}",
                embedding=embedding,
                metadata={
                    "document_id": document.id,
                    "chunk_index": chunk.index,
                    "text": chunk.text,
                    "source": document.source,
                    "updated_at": datetime.utcnow().isoformat()
                }
            )

        # Update metadata
        await self.metadata_store.upsert(
            document_id=document.id,
            hash=document.content_hash,
            chunk_count=len(chunks),
            processed_at=datetime.utcnow()
        )

        return IngestionResult(
            status="processed",
            chunks=len(chunks)
        )

Incremental Processing

class IncrementalPipeline:
    """Process only changed documents."""

    async def sync(self, source: DataSource) -> SyncResult:
        # Get changes since last sync
        last_sync = await self.state.get_last_sync(source.id)
        changes = await source.get_changes(since=last_sync)

        processed = 0
        deleted = 0

        for change in changes:
            if change.type == "upsert":
                await self.pipeline.ingest_document(change.document)
                processed += 1
            elif change.type == "delete":
                await self.delete_document(change.document_id)
                deleted += 1

        # Update sync state
        await self.state.set_last_sync(source.id, datetime.utcnow())

        return SyncResult(
            processed=processed,
            deleted=deleted
        )

    async def delete_document(self, document_id: str):
        # Delete all chunks
        await self.vector_store.delete_by_filter(
            filter={"document_id": document_id}
        )
        await self.metadata_store.delete(document_id)

Multi-Source Aggregation

multi_source_pipeline:
  sources:
    notion:
      type: "api"
      sync_frequency: "1 hour"
      transformer: "notion_to_markdown"

    confluence:
      type: "api"
      sync_frequency: "4 hours"
      transformer: "confluence_to_markdown"

    github:
      type: "webhook"
      events: ["push", "pull_request"]
      transformer: "code_to_searchable"

    pdfs:
      type: "storage"
      location: "s3://docs-bucket"
      transformer: "pdf_to_text"

  unified_index:
    - All sources indexed together
    - Source metadata preserved
    - Cross-source search enabled

Chunking Strategies

class SmartChunker:
    """Context-aware document chunking."""

    async def chunk(
        self,
        document: Document
    ) -> list[Chunk]:
        doc_type = self._detect_type(document)

        if doc_type == "code":
            return await self._chunk_code(document)
        elif doc_type == "markdown":
            return await self._chunk_markdown(document)
        else:
            return await self._chunk_text(document)

    async def _chunk_markdown(
        self,
        document: Document
    ) -> list[Chunk]:
        sections = self._split_by_headers(document.content)
        chunks = []

        for section in sections:
            # Keep sections together if small enough
            if len(section.text) <= self.max_chunk_size:
                chunks.append(Chunk(
                    text=f"# {section.header}\n\n{section.text}",
                    metadata={"section": section.header}
                ))
            else:
                # Split large sections
                sub_chunks = self._split_by_paragraphs(section)
                for sub in sub_chunks:
                    sub.text = f"# {section.header}\n\n{sub.text}"
                chunks.extend(sub_chunks)

        return chunks

Freshness and Quality

data_quality:
  freshness:
    - Track last sync time per source
    - Alert on stale data
    - Prioritize frequently accessed

  quality_checks:
    - Embedding validity
    - Chunk coherence
    - Metadata completeness

  monitoring:
    - Index size over time
    - Query performance
    - Source health

Key Takeaways

Good data pipelines make good AI applications.