Traditional product metrics—conversion, engagement, retention—don’t tell you if your AI is good. An AI feature can have high engagement while giving wrong answers. AI products need additional metrics.
Here’s how to measure AI product quality.
The Metrics Gap
Traditional vs AI Metrics
metrics_comparison:
traditional:
- DAU/MAU
- Conversion rate
- Time in app
- Feature adoption
- Tells you: "Are users using it?"
ai_specific:
- Output quality
- Task success rate
- Hallucination rate
- User trust
- Tells you: "Is it actually good?"
the_gap:
- Users might use bad AI
- High engagement ≠ high quality
- Need both types of metrics
AI Quality Metrics
Output Quality
class QualityMetrics:
"""Track AI output quality."""
async def measure_quality(
self,
request: Request,
response: Response,
context: dict
) -> QualityScore:
scores = {}
# Automated evaluation
scores["automated"] = await self._automated_eval(
request, response
)
# User feedback (when available)
if context.get("user_feedback"):
scores["user"] = context["user_feedback"]
# Human evaluation (sampled)
if self._should_sample():
scores["human"] = await self._queue_for_human_eval(
request, response
)
return QualityScore(
overall=self._aggregate(scores),
breakdown=scores
)
async def _automated_eval(
self,
request: Request,
response: Response
) -> dict:
checks = await asyncio.gather(
self._check_relevance(request, response),
self._check_coherence(response),
self._check_safety(response),
self._check_format(response)
)
return {
"relevance": checks[0],
"coherence": checks[1],
"safety": checks[2],
"format": checks[3]
}
Task Success Rate
class TaskSuccessTracker:
"""Track whether AI helps users complete tasks."""
async def track_task(
self,
task_id: str,
ai_interactions: list[Interaction],
outcome: TaskOutcome
):
await self.store.record(
task_id=task_id,
interactions=len(ai_interactions),
outcome=outcome.status,
time_to_completion=outcome.duration,
ai_contribution=self._assess_contribution(
ai_interactions, outcome
)
)
def get_success_rate(
self,
time_period: str = "7d"
) -> SuccessMetrics:
tasks = self.store.query(period=time_period)
return SuccessMetrics(
completion_rate=self._completion_rate(tasks),
ai_assisted_rate=self._ai_assisted_rate(tasks),
ai_success_rate=self._ai_success_rate(tasks),
avg_interactions=self._avg_interactions(tasks)
)
Trust Metrics
trust_metrics:
explicit:
- Thumbs up/down on responses
- "Was this helpful?" surveys
- Reported issues
implicit:
- Response acceptance rate
- Edit rate after AI suggestion
- Return usage patterns
- Abandonment after AI response
longitudinal:
- Trust over time
- Usage patterns changes
- Feature dependency
Metric Framework
The AI Product Scorecard
ai_product_scorecard:
quality:
metrics:
- Accuracy/correctness
- Relevance
- Safety
targets:
- ">90% accuracy on evals"
- "<1% safety violations"
utility:
metrics:
- Task completion rate
- Time saved
- User satisfaction
targets:
- ">70% task completion"
- "30% time reduction"
reliability:
metrics:
- Availability
- Latency
- Consistency
targets:
- "99.9% uptime"
- "<3s P95 latency"
efficiency:
metrics:
- Cost per interaction
- Cost per successful task
targets:
- "Declining cost trend"
Dashboard Design
class AIProductDashboard:
"""Comprehensive AI product metrics."""
def get_dashboard_data(self, period: str) -> DashboardData:
return DashboardData(
# Usage (traditional)
usage=UsageMetrics(
active_users=self.get_active_users(period),
interactions=self.get_interaction_count(period),
feature_adoption=self.get_adoption_rate(period)
),
# Quality (AI-specific)
quality=QualityMetrics(
accuracy=self.get_accuracy(period),
safety_rate=self.get_safety_rate(period),
hallucination_rate=self.get_hallucination_rate(period)
),
# Success (AI-specific)
success=SuccessMetrics(
task_completion=self.get_task_completion(period),
user_satisfaction=self.get_satisfaction(period),
trust_score=self.get_trust_score(period)
),
# Efficiency
efficiency=EfficiencyMetrics(
cost_per_interaction=self.get_cost_per_interaction(period),
latency_p50=self.get_latency_p50(period),
latency_p95=self.get_latency_p95(period)
)
)
Key Takeaways
- Traditional metrics don’t capture AI quality
- Measure both usage and quality
- Task success rate is the ultimate metric
- Trust metrics show long-term health
- Combine automated, user, and human evaluation
- Build AI-specific dashboards
- Quality problems hide behind engagement
- Invest in evaluation infrastructure
Measure what matters. Quality is measurable.