AI Product Metrics That Matter

July 7, 2025

Traditional product metrics—conversion, engagement, retention—don’t tell you if your AI is good. An AI feature can have high engagement while giving wrong answers. AI products need additional metrics.

Here’s how to measure AI product quality.

The Metrics Gap

Traditional vs AI Metrics

metrics_comparison:
  traditional:
    - DAU/MAU
    - Conversion rate
    - Time in app
    - Feature adoption
    - Tells you: "Are users using it?"

  ai_specific:
    - Output quality
    - Task success rate
    - Hallucination rate
    - User trust
    - Tells you: "Is it actually good?"

  the_gap:
    - Users might use bad AI
    - High engagement ≠ high quality
    - Need both types of metrics

AI Quality Metrics

Output Quality

class QualityMetrics:
    """Track AI output quality."""

    async def measure_quality(
        self,
        request: Request,
        response: Response,
        context: dict
    ) -> QualityScore:
        scores = {}

        # Automated evaluation
        scores["automated"] = await self._automated_eval(
            request, response
        )

        # User feedback (when available)
        if context.get("user_feedback"):
            scores["user"] = context["user_feedback"]

        # Human evaluation (sampled)
        if self._should_sample():
            scores["human"] = await self._queue_for_human_eval(
                request, response
            )

        return QualityScore(
            overall=self._aggregate(scores),
            breakdown=scores
        )

    async def _automated_eval(
        self,
        request: Request,
        response: Response
    ) -> dict:
        checks = await asyncio.gather(
            self._check_relevance(request, response),
            self._check_coherence(response),
            self._check_safety(response),
            self._check_format(response)
        )

        return {
            "relevance": checks[0],
            "coherence": checks[1],
            "safety": checks[2],
            "format": checks[3]
        }

Task Success Rate

class TaskSuccessTracker:
    """Track whether AI helps users complete tasks."""

    async def track_task(
        self,
        task_id: str,
        ai_interactions: list[Interaction],
        outcome: TaskOutcome
    ):
        await self.store.record(
            task_id=task_id,
            interactions=len(ai_interactions),
            outcome=outcome.status,
            time_to_completion=outcome.duration,
            ai_contribution=self._assess_contribution(
                ai_interactions, outcome
            )
        )

    def get_success_rate(
        self,
        time_period: str = "7d"
    ) -> SuccessMetrics:
        tasks = self.store.query(period=time_period)

        return SuccessMetrics(
            completion_rate=self._completion_rate(tasks),
            ai_assisted_rate=self._ai_assisted_rate(tasks),
            ai_success_rate=self._ai_success_rate(tasks),
            avg_interactions=self._avg_interactions(tasks)
        )

Trust Metrics

trust_metrics:
  explicit:
    - Thumbs up/down on responses
    - "Was this helpful?" surveys
    - Reported issues

  implicit:
    - Response acceptance rate
    - Edit rate after AI suggestion
    - Return usage patterns
    - Abandonment after AI response

  longitudinal:
    - Trust over time
    - Usage patterns changes
    - Feature dependency

Metric Framework

The AI Product Scorecard

ai_product_scorecard:
  quality:
    metrics:
      - Accuracy/correctness
      - Relevance
      - Safety
    targets:
      - ">90% accuracy on evals"
      - "<1% safety violations"

  utility:
    metrics:
      - Task completion rate
      - Time saved
      - User satisfaction
    targets:
      - ">70% task completion"
      - "30% time reduction"

  reliability:
    metrics:
      - Availability
      - Latency
      - Consistency
    targets:
      - "99.9% uptime"
      - "<3s P95 latency"

  efficiency:
    metrics:
      - Cost per interaction
      - Cost per successful task
    targets:
      - "Declining cost trend"

Dashboard Design

class AIProductDashboard:
    """Comprehensive AI product metrics."""

    def get_dashboard_data(self, period: str) -> DashboardData:
        return DashboardData(
            # Usage (traditional)
            usage=UsageMetrics(
                active_users=self.get_active_users(period),
                interactions=self.get_interaction_count(period),
                feature_adoption=self.get_adoption_rate(period)
            ),

            # Quality (AI-specific)
            quality=QualityMetrics(
                accuracy=self.get_accuracy(period),
                safety_rate=self.get_safety_rate(period),
                hallucination_rate=self.get_hallucination_rate(period)
            ),

            # Success (AI-specific)
            success=SuccessMetrics(
                task_completion=self.get_task_completion(period),
                user_satisfaction=self.get_satisfaction(period),
                trust_score=self.get_trust_score(period)
            ),

            # Efficiency
            efficiency=EfficiencyMetrics(
                cost_per_interaction=self.get_cost_per_interaction(period),
                latency_p50=self.get_latency_p50(period),
                latency_p95=self.get_latency_p95(period)
            )
        )

Key Takeaways

Measure what matters. Quality is measurable.